Smooth muscle-targeted knockout of connexin43 enhances neointimal formation in response to vascular injury.
نویسندگان
چکیده
OBJECTIVE Vascular disease alters and reduces connexin expression and a reduction in connexin 43 (Cx43) expression diminishes the extent of atherosclerosis observed in a high-cholesterol diet murine model. We hypothesized that connexins might play a role in the smooth muscle cell response to vascular injury. METHODS AND RESULTS We therefore studied a line of smooth muscle cell-specific, Cx43 gene knockout mice (SM Cx43 KO) in which the carotid arteries were injured, either by vascular occlusion or by a wire injury. In the SM Cx43 KO mice both types of injury manifested accelerated growth of the neointima and of the adventitia. Isolated vascular smooth muscle cells from the SM Cx43 KO mice grew at a slightly faster rate in culture, and to marginally higher saturation densities than those of control mice, but these changes were not adequate to explain the large changes in the injured vessels. CONCLUSIONS These observations provide direct evidence that smooth muscle Cx43 gap junctions play a multi-faceted role in modulating the in vivo growth response of vascular smooth muscle cells to vascular injury.
منابع مشابه
Reduced connexin43 expression limits neointima formation after balloon distension injury in hypercholesterolemic mice.
BACKGROUND Reducing the expression of the gap junction protein connexin43 (Cx43) inhibits the progression of atherosclerosis, a chronic inflammatory disease. Furthermore, acute vascular injury induced by percutaneous coronary interventions is associated with increased Cx43 expression in neointimal smooth muscle cells (SMCs). However, the relevance of Cx43 after acute vascular injury remains unc...
متن کاملDeletion of Krüppel‐Like Factor 4 in Endothelial and Hematopoietic Cells Enhances Neointimal Formation Following Vascular Injury
BACKGROUND Krüppel-like factor 4 (Klf4) is involved in a variety of cellular functions by activating or repressing the transcription of multiple genes. Results of previous studies showed that tamoxifen-inducible global deletion of the Klf4 gene in mice accelerated neointimal formation following vascular injury, in part via enhanced proliferation of smooth muscle cells (SMCs). Because Klf4 is al...
متن کاملDecreased Neointimal Thickening After Arterial Wall Injury in Inducible Nitric Oxide
Mechanical injury in vivo results in the expression of the inducible form of nitric oxide synthase (iNOS) in vascular smooth muscle cells. However, the role of iNOS in modulating neointima formation after arterial wall injury is not clear. To determine whether the induction of iNOS gene expression promotes or attenuates the neointimal response to injury, we used a murine model of perivascular i...
متن کاملDecreased neointimal thickening after arterial wall injury in inducible nitric oxide synthase knockout mice.
Mechanical injury in vivo results in the expression of the inducible form of nitric oxide synthase (iNOS) in vascular smooth muscle cells. However, the role of iNOS in modulating neointima formation after arterial wall injury is not clear. To determine whether the induction of iNOS gene expression promotes or attenuates the neointimal response to injury, we used a murine model of perivascular i...
متن کاملIQGAP1 links PDGF receptor-β signal to focal adhesions involved in vascular smooth muscle cell migration: role in neointimal formation after vascular injury.
Platelet-derived growth factor (PDGF) stimulates vascular smooth muscle cell (VSMC) migration and neointimal formation in response to injury. We previously identified IQ-domain GTPase-activating protein 1 (IQGAP1) as a novel VEGF receptor 2 binding scaffold protein involved in endothelial migration. However, its role in VSMC migration and neointimal formation in vivo is unknown. Here we show th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 27 5 شماره
صفحات -
تاریخ انتشار 2007